Two Algorithmsfor Learning the Parametersof Stochastic Context-Free
Grammars

Brent Heeringa
Department of Computer Science
University of Massachusetts, Amherst
140 Governor’s Drive
Ambherst, MA 01003
heeringa@cs.umass.edu

Abstract

Stochastic context-free grammars (SCFGs) are often
used to represent the syntax of natural languages. Most
algorithms for learning them require storage and re-
peated processing of a sentence corpus. The memory
and computational demands of such algorithms are ill-
suited for embedded agents such as a mobile robot. Two
algorithms are presented that incrementally learn the
parameters of stochastic context-free grammars as sen-
tences are observed. Both algorithms require a fixed
amount of space regardless of the number of sentence
observations. Despite using less information than the
inside-outside algorithm, the algorithms perform almost
aswell.

I ntroduction

Although natural languages are not entirely context free,
stochastic context-free grammars (SCFGs) are an effective
representation for capturing much of their structure. How-
ever, for embedded agents, most algorithms for learning
SCFGs from data have two shortcomings. First, they need
access to a corpus of complete sentences, requiring the agent
to retain every sentence it hears. Second, they are batch al-
gorithms that make repeated passes over the data, often re-
quiring significant computation in each pass. These short-
comings are addressed through two online algorithms called
SPAN! and PRESPAN? that learn the parameters of SCFGs
using only summary statistics in combination with repeated
sampling techniques.

SCFGs contain both structure (i.e. rules) and parameters
(i.e. rule probabilities). One approach to learning SCFGs
from data is to start with a grammar containing all possible
rules that can be created from some alphabet of terminals
and non-terminals. Typically the size of the right-hand-side
of each rule is bound by a small constant (e.g. 2). Then an
algorithm for learning parameters is applied and allowed to
“prune” rules by setting their expansion probabilitiesto zero
(Lari & Young, 1990). PRESPAN and SPAN operate in this

Copyright © 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

SpAN stands for Sample Parse Adjust Normalize

2PRESPAN is so named because it is the predecessor of SPAN,
so it literally means pre-SPAN

Tim Oates

Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County
1000 Hilltop Circle
Baltimore, MD 21250
oates@eecs.umbc.edu

paradigm by assuming a fixed structure and modifying the
parameters.

Given a SCFG to be learned, both algorithms have ac-
cess to the structure of the grammar and a set of sentences
generated by the grammar. The correct parameters are un-
known. PRESPAN and SPAN begin by parsing the sentence
corpus using a chart parser. Note that the parse of an indi-
vidual sentence does not depend on the parameters; it only
depends on the structure. However, the distribution of sen-
tences parsed does depend on the parameters of the grammar
used to generate them. Both algorithms associate with each
rule a histogram that records the number of times the rule is
used in parses of the individual sentences.

PRESPAN and SPAN make an initial guess at the values
of the parameters by setting them randomly. They then gen-
erate a corpus of sentences with these parameters and parse
them, resulting in a second set of histograms. The degree
to which the two sets of histograms differ is a measure of
the difference between the current parameter estimates and
the target parameters. PRESPAN modifies its parameter es-
timates so the sum total difference between the histograms
is minimized. In contrast, SPAN modifies its estimates so
the difference between individual histograms is minimized.
Empirical results show that this procedure yields parameters
that are close to those found by the inside-outside algorithm.

Stochastic Context-Free Grammars

Stochastic context-free grammars ® are the natural exten-
sion of Context-Free Grammars to the probabilistic do-
main (Sipser, 1997; Charniak, 1993). Said differently,
they are context-free grammars with probabilities associ-
ated with each rule. Formally, a SCFG is a four-tuple
M =(V,X, R, S) where

1. V is afinite set of non-terminals
2. ¥ is afinite set, disjoint from V', of terminals

3. R is a finite set of rules of the form A — w where A
belongs to V, and w is a finite string composed of ele-
ments from V" and . We refer to A as the left-hand side
(L HS) of the rule and w as the right-hand side (RH S),
or expansion, of the rule. Additionally, each rule r has an

3Stochastic Context-Free Grammars are often called Probabilis-
tic Context-Free Grammars.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2001 2 REPORT TYPE 00-00-2001 to 00-00-2001
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER
Two Algorithmsfor L earning the Parameters of Stochastic Context-Free | .\ NnUMBER
Grammars

5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Univer sity of M assachusetts,Department of Computer REPORT NUMBER

Science, Amherst,M A,01002

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 6
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

associated probability p(r) such that the probabilities of
rules with the same left-hand side sum to 1.

4. S'is the start symbol.

Grammars can either be ambiguous or unambiguous.
Ambiguous grammars can generate the same string in mul-
tiple ways. Unambiguous grammars cannot.

L earning Stochastic-Context Free Grammars

Learning context-free grammars is the problem of inducing
a context-free structure (or model) from a corpus of sen-
tences (i.e., data). When the grammars are stochastic, one
faces the additional problem of learning rule probabilities
(parameters) from the corpus. Given a set of sentence ob-
servations O = {op...0,_1}, the goal is to discover the
grammar that generated O. Typically, this problem is framed
in terms of a search in grammar space where the objective
function is the likelihood of the data given the grammar.
While the problem of incrementally learning the structure
of SCFGs is interesting in its own right, the main focus here
is on learning parameters. For a thorough overview of ex-
isting techniques for learning structure, see (Stolcke, 1994;
Chen, 1996; Nevill-Manning & Witten, 1997).

L earning Parameters

The inside-outside algorithm (Lari & Young, 1990; Lari &
Young, 1991) is the standard method for estimating param-
eters in SCFGs. The algorithm uses the general-purpose
expectation-maximization (EM) procedure. Almost all pa-
rameter learning is done batch style using some version of
the inside-outside algorithm. For example, in learning pa-
rameters, (Chen, 1995) initially estimates the rule probabil-
ities using the most probable parse of the sentences given
the grammar (the Viterbi parse) and then uses a “post-pass”
procedure that incorporates the inside-outside algorithm.

To use EM the entire sentence corpus must be stored.
While this storage may not be in the form of actual sen-
tences, it is always in some representation that easily al-
lows the reconstruction of the original corpus (e.g., the chart
of a chart parse). Because we are interested in language
acquisition in embedded agents over long periods of time,
the prospect of memorizing and repeatedly processing en-
tire sentence corpora is unpalatable.

This motivation also carries a desire to easily adjust our
parameters when new sentences are encountered. That is, we
want to learn production probabilities incrementally. While
the inside-outside algorithm can incorporate new sentences
in between iterations, it still uses the entire sentence corpus
for estimation.

TheAlgorithms

PRESPAN and SPAN address some of the concerns given
in the previous section. Both are unsupervised, incremen-
tal algorithms for finding parameter estimates in stochastic
context-free grammars.

PRESPAN and SPAN are incremental in two ways. First, in
the classical sense, at every iteration they use the previously
learned parameter estimation as a stepping stone to the new

Table 1: A grammar that generates palindromes

S - A A

S - B B

S - A C

S - B D

¢ - S A

D —- S B

A =Y

B - 7

Y = vy

X = =z
B I e e
0 1 0 1 0 1 0 1
S >A A S —->AC S >B B S >B C

B |

R B

D > S B B > Z A —>Y

0 1 2 3 4
C >SS A

Figure 1: The palindrome grammar rule histograms after
only one parse of the sentence y y y y. Because only one
sentence has been parse, the mass of the distribution is con-
centrated in a single bin.

one. Second, both algorithms naturally allow new data to
contribute to learning without restarting the entire process.

PRESPAN and SPAN use only a statistical summary of the
observation data for learning. Both store the summary infor-
mation in histograms. SPAN and PRESPAN also record his-
togram information about their current parameter estimates.
So the addition of new sentences typically does not increase
the memory requirements. Furthermore, the histograms play
a crucial role in learning. If the parameter estimates are ac-
curate, the histograms of the observed data should resemble
the histograms of the current parameterization. When the
histograms do not resemble each other, the difference is used
to guide the learning process.

A Description of PRESPAN

Let7T = (V,X,R,S)beaSCFGandletO = {oy...0n_1}
be a set of n sentences generated stochastically from T. Let
M = (V,X, R, S) be a SCFG that is the same as 7" except
the rule probabilities in R’ have been assigned at random
(subject to the constraint that the sum of the probabilities for
all rules with the same left-hand side is one). 7" is called the
target grammar and M the learning grammar. The goal is to
use a statistical summary of O to obtain parameters for M
that are as close to the unknown parameters of 7" as possible.

Using M and a standard chart parsing algorithm (e.g.,
Charniak, 1993 or Allen, 1995) one can parse a sentence and
count how many times a particular rule was used in deriving
that sentence. Let each rule » in a grammar have two asso-
ciated histograms called #© and . HC is constructed
by parsing each sentence in O and recording the number of
times rule » appears in the parse tree of the sentence. His-

l m= B B

S —>AanA S —>AacC S > BB s —>BC
0o 1 0o 1 o 1 o 1 2 3 a

C >SS A D >SB B > Z A >Y

Figure 2: The palindrome grammar rule histograms after
parsingy y y y and y y. Notice that the mass of rules
S — AC,and C — S A are now evenly distributed be-
tween 0 and 1. Similarly the mass of rule S — Y is evenly
distributed between 2 and 4.

tograms constructed in this way are called observation his-
tograms. The indices of the histogram range from 0 to &
where £ is the maximum number of times a rule was used in
a particular sentence parse. In many cases, & remains small,
and more importantly, when a sentence parse does not in-
crease k, the storage requirements remain unchanged.

Each H! is a histogram identical in nature to H° but
is used during the learning process, so it’s a learning his-
togram. Like the observation histograms, PRESPAN uses
each learning histogram to record the number of times each
rule occurs in single sentence parses during the learning pro-
cess. The difference is that the corpus of sentences parsed to
fill HI is generated stochastically from A7 using its current
parameters.

For example, suppose PRESPAN is provided with the
palindrome-generating structure given in Table 1 and en-
counters the sentence y y y y. Chart parsing the sentence
reveals that rule A — Y has frequency 4, rules S — A A,
S — AC and S — A have frequency 1, and the remaining
non-terminals have frequency 0. Figure 1 depicts graphi-
cally the histograms for each rule after parsing the sentence.
In parsing the sentence y y, the rule S — A A is used once,
A — Y is used twice and the other rules are not used. Fig-
ure 2 shows how the histograms in Figure 1 change after
additionally parsing y y.

After every sentence parse, PRESPAN updates the obser-
vation histograms and discards the sentence along with its
parse. Itis left with only a statistical summary of the corpus.
As a result, one cannot reconstruct the observation corpus or
any single sentence within it. From this point forward the
observation histograms are updated only when new data is
encountered.

PRESPAN now begins the iterative process. First, it ran-
domly generates a small sentence corpus of prespecified
constant size s from its learning grammar . Each sentence
in the sample is parsed using a chart parser. Using the chart,
PRESPAN records summary statistics exactly as it did for the
observation corpus except the statistics for each rule » are
added to the learning histograms instead of the observation
histograms. After discarding the sentences, the learning his-
tograms are normalized to some fixed size h. Without nor-
malization, the information provided by the new statistics
would have decreasing impact on the histograms’ distribu-

tions. This is because the bin counts typically increase lin-
early while the sample size remains constant. Future work
will examine the role of the normalization factor, however,
for this work it is kept fixed throughout the duration of the
algorithm.

For each rule » PRESPAN now has two distributions: H ¢,
based on the corpus generated from 7', and H} based on
the corpus generated from M. Comparing H X to HC seems
a natural predictor of the likelihood of the observation cor-
pus given PRESPAN’s learning grammar. Relative entropy
(also known as the Kullback-Leibler distance) is commonly
used to compare two distributions p and ¢ (Cover & Thomas,
1991). It is defined as:

13
)1
D(pllg) = Zp Og @)

Because two distributions are associated with each rule r,
the relative entropies are summed over the rules.

T= Z Zp,«(l‘) log 1;): Eg Q)

If 7 decreases between iterations, then the likelihood of
M is increasing so PRESPAN increases the probabilities of
the rules used in generating the sample corpus. When s is
large, the algorithm only increases a small subset of the rules
used to generate the sample.* Likewise, if 7 increases be-
tween iterations, PRESPAN decreases the rule probabilities.

PRESPAN uses a multiplicative update function. Suppose
rule » was selected for an update at time ¢. If p(r) is the
probability of » at time ¢ and decreased between itera-
tions, then p,41(r) = 1.01 % p(r). Once the probability
updates are performed PRESPAN starts another iteration be-
ginning with the generation of a small sentence corpus from
the learning grammar. The algorithm stops iterating when
the relative entropy falls below a threshold, or some pre-
specified number of iterations has completed.

A Description of SPAN

SpPAN differs from PRESPAN in the selection of rules to up-
date, the criteria for updates, and the update rule itself. Re-
call that PRESPAN uses 7 (see Equation 1), the sum of rel-
ative entropy calculations for each rule, as a measure of
progress or deterioration of grammar updates. Since 7 is an
aggregate value, an unsuccessful change in probability for
one rule could overshadow a successful change of another
rule. Furthermore, the update rule does not differentiate be-
tween small and large successes and failures.

SPAN addresses these concerns by examining local
changes in relative entropy and using those values to make
rule specific changes. SPAN calculates the relative entropy
for rule r at time ¢ and compares it with the relative entropy
attime ¢ — 1. If the relative entropy decreases it means SPAN
updated the rule probability favorably, if it increases, the dis-
tributions have become more dissimilar so the probability

4Using only the rules fired during the generation of the last sen-
tence seems to works well.

should move in the opposite direction. This is best explained
by examining SPAN’s update rule:

Pipi(r) = P(r) + « sgn(Py(r) — Pi—1(r))
sgn(AREY)
F(AREY)

(Pe(r) = Pe-1(7))

* K ¥ ¥

+ p
(2)

The update rule is based on the steepest descent method
(Bertsekas & Tsitsiklis, 1996). Here, sgn is the “sign” func-
tion that returns -1 if its argument is negative, O if its ar-
gument is zero and +1 if its argument is positive. The first
sign function determines the direction of the previous up-
date. That is, it determines whether, in the last time step,
SPAN increased or decreased the probability. The second
sign function determines if the relative entropy has increased
or decreased. If it has decreased, then the difference is posi-
tive, if itincreased, the difference is negative. Together these
sign functions determine the direction of the step. The func-
tion f(ARE,) returns the magnitude of the step. This, intu-
itively, is an estimate of the gradient since the magnitude of
the change in relative entropy is reflective of the slope. The
« parameter is a step-size. Finally the 3« (P.(r) — P.—1(7))
expression is a momentum term.

Once the probability updates are performed for each rule,
another iteration starts beginning with the generation of a
small sentence corpus from the learning grammar. Like
PRESPAN, the algorithm stops iterating when the relative en-
tropy falls below a threshold, or some prespecified number
of iterations has completed.

SPAN is a more focused learning algorithm than PRES-
PAN. This is because all rules are individually updated based
on local changes instead of stochastically selected and up-
dated based on global changes. The algorithmic changes
speed up learning by, at times, two orders of magnitude.
While these benefits drastically increase learning time, they
do not necessarily result in more accurate grammars. Ev-
idence and explanation of this is given in the Experiments
section.

Algorithm Analysis

In this section both the time and space requirements of the
algorithms are analyzed. Comparing the results with the
time and space requirements of the inside-outside algorithm
shows that SPAN and PRESPAN are asymptotically equiva-
lent in time but nearly constant (as opposed to linear with
inside-outside) in space.

The inside-outside algorithm runs in O(£3|V]3) time
where £ is the length of sentence corpus and |V/| is the num-
ber of non-terminal symbols (Stolcke, 1994). The complex-
ity arises directly from the chart parsing routines used to es-
timate probabilities. Note that the number of iterations used
by the inside-outside algorithm is dominated by the compu-
tational complexity of chart parsing.

Both SPAN and PRESPAN chart parse the observation cor-
pus once but repeatedly chart parse the fixed size samples
they generates during the learning process. Taken as a
whole, this iterative process typically dominates the single

Table 2: A grammar generating simple English phrases

S — NP VP
NP — Det N
VP — Vit NP
VP — Ve PP
vP — Vi

PP — P NP
Det — A

Det — THE

Vi — TOUCHES

Vi — COVERS

Ve — Is

Vi — ROLLS

Vi — BOUNCES

N — CIRCLE

N — SQUARE

N — TRIANGLE

P — ABOVE

P — BELOW

A — a

THE — the

TOUCHES — touches

Is — 18

ROLLS — rolls

BOUNCES — bounces

CIRCLE — circle

SQURE — square
TRIANGLE — triangle

ABOVE — above

BELOW — below

parse of the observations sentences, so the computational
complexity is O(73|V|?) where 7 is the length of of the
maximum sample of any iteration.

Every iteration of the inside-outside algorithm requires
the complete sentence corpus. Using the algorithm in the
context of embedded agents, where the sentence corpus in-
creases continuously with time, means a corresponding con-
tinuous increase in memory. With SPAN and PRESPAN, the
memory requirements remain effectively constant.

While the algorithms continually update their learning
histograms through the learning process, the number of bins
increases only when a sentence parse contains an occurrence
count larger than any encountered previously. The sample is
representative of the grammar parameters and structure, so
typically after a few iterations, the number of bins becomes
stable. This means that when new sentences are encoun-
tered there is typically no increase in the amount of space
required.

Experiments

The previous section described two online algorithms for
learning the parameters of SCFGs given summary statistics
computed from a corpus of sentences. The remaining ques-
tion is whether the quality of the learned grammar is sac-
rificed because a statistical summary of the information is
used rather than the complete sentence corpus. This section
presents the results of experiments that compare the gram-
mars learned with PRESPAN and SPAN with those learned
by the inside-outside algorithm.

The following sections provide experimental results for
both the PRESPAN and SPAN algorithms.

Experiments with PRESPAN

Let M7 be the target grammar whose parameters are to be
learned. Let A~ be a grammar that has the same structure

Table 3: An ambiguous grammar

AW W N®n
R T R R A AR A
gEe M oD

as M7 but with rule probabilities initialized uniformly ran-
dom and normalized so the sum of the probabilities of the
rules with the same left-hand side is 1.0. Let O7 be a set
of sentences generated stochastically from M 7. The perfor-
mance of the algorithm is compared by running it on M *
and OT and computing the log likelihood of O given the
final grammar.

Because the algorithm learns parameters for a fixed struc-
ture, a number of different target grammars are used in ex-
perimentation; each with the same structure but different
rule probabilities. The goal is to determine whether any re-
gions of parameter space were significantly better for one
algorithm over the other. This is accomplished by stochas-
tically sampling from this space. Note that a new corpus is
generated for each new set of parameters as they influence
which sentences are generated.

The grammar shown in Table 2 (Stolcke, 1994) was used
in this manner with 50 different target parameter settings and
500 sentences in O for each setting. The mean and stan-
dard deviation of the log likelihoods for PRESPAN with
h = s = 100 (histogram size and learning corpus size re-
spectively) were = —962.58 and o = 241.25. These val-
ues for the inside-outside algorithm were ;. = —959.83 and
o = 240.85. Recall that equivalent performance would be
a significant accomplishment because the online algorithm
has access to much less information about the data. Suppose
the means of both empirical distributions are equal. With
this assumption as the null hypothesis, a two-tailed t-test re-
sults in p = 0.95. This means that if one rejects the null
hypothesis, the probability of making an error is 0.95.

Unfortunately, the above result does not sanction the con-
clusion that the two distributions are the same. One can,
however, look at the power of the test in this case. If the
test’s power is high then it is likely that a true difference in
the means would be detected. If the power is low then it
is unlikely that the test would detect a real difference. The
power of a test depends on a number of factors, including the
sample size, the standard deviation, the significance level of
the test, and the actual difference between the means. Given
a sample size of 50, a standard deviation of 240.05, a sig-
nificance level of 0.05, and an actual delta of 174.79, the
power of the t-test is 0.95. That is, with probability 0.95 the
t-test will detect a difference in means of at least 174.79 at

the given significance level. Because the mean of the two
distributions is minute, a more powerful test is needed.

Since both PRESPAN and the inside-outside algorithm
were run on the same problems, a paired sample t-test can
be applied. This test is more powerful than the standard t-
test. Suppose again the the means of the two distributions
are equal. Using this as the null hypothesis and performing
the paired sample t-test yields p < 0.01. That is, the prob-
ability of making an error in rejecting the null hypothesis is
less than 0.01. Closer inspection of the data reveals why this
is the case. inside-outside performed better than the online
algorithm on each of the 50 grammars. However, as is ev-
ident from the means and standard deviation, the absolute
difference in each case was quite small.

The same experiments were conducted with the ambigu-
ous grammar shown in Table 3. The grammar is ambigu-
ous because, for example, z z can be generated by S —
A—-CC — zzorS - BAwithB - 5 - C = 2
and A — C — z. The mean and standard deviation of
the log likelihoods for PRESPAN were @ = —1983.15 and
o = 250.95. These values for the inside-outside algorithm
were = —1979.37and o = 250.57. The standard t-test re-
turned a p value of 0.94 and the paired sample t-test was sig-
nificant at the 0.01 level. Again, inside-outside performed
better on every one of the 50 grammars, but the differences
were very small.

Experiments with SPAN

The same experiments were performed using SPAN. That
is, the grammar in Table 2 was used with 50 different tar-
get parameter settings and 500 sentences in O for each
setting. The mean and standard deviation of the log like-
lihoods for the SPAN with h = s = 100 (histogram size
and learning corpus size respectively) were ;1 = —4266.44
and o = 650.57. These values for the inside-outside algo-
rithm were ¢ = —3987.58 and ¢ = 608.59. Recall that
equivalent performance would be a significant accomplish-
ment because the online algorithm has access to much less
information about the data. Assuming both the means of the
distributions are equal and using this as the null hypothesis
of a two-tailed t-test results in p = 0.03.

The same experiment was conducted with the ambiguous
grammar shown in table 3. The grammar is ambiguous, for
example, because z z could be generated by S — A —
CC — z,zor S - BAwithB - S - C — zand
A — C — z. The mean and standard deviation of the log
likelihoods for the online algorithm were ¢ = —2025.93 and
o = 589.78. These values for the inside-outside algorithm
were ¢ = —1838.41 and o = 523.46. The t-test returned a
p value of 0.33.

Inside-outside performed significantly better on the un-
ambiguous grammar but there was not a significant differ-
ence on the ambiguous grammar. Given the fact that SPAN
has access to far less information than the inside-outside al-
gorithm, this is not a trivial accomplishment. One conjec-
ture is that SPAN never actually converges to a stable set
of parameters but walks around whatever local optimum it
finds in parameter space. This is suggested by the obser-
vation that for any given training set the log likelihood for

the inside-outside algorithm is always higher than that for
SPAN. Comparison of the parameters learned shows that
SPAN is moving in the direction of the correct parameters
but that it never actually converges on them.

Discussion

It was noted earlier that SPAN learns more quickly than
PRESPAN but the Experiments section shows this improve-
ment may come at a cost. One reason for this may lie in the
the sentence samples produced from the learning grammar
during each iteration. Recall that SPAN learns by generat-
ing a sentence sample using its current parameter estimates.
Then this sample is parsed and the distribution is compared
to the distribution of the sentences generated from the tar-
get grammar. Each sentence sample reflects the current pa-
rameter estimates, but also has some amount of error. This
error may be more pronounced in SPAN because at each iter-
ation, every rule is updated. This update is a direct function
of statistics computed from the sample, so the sample error
may overshadow actual improvement or deterioration in pa-
rameter updates from the last iteration.

Overcoming the sample error problem in SPAN might be
accomplished by incorporating global views of progress, not
unlike those used in PRESPAN. In fact, a synergy of the two
algorithms may be an appropriate next step in this research.

Another interesting prospect for future parameter-
learning research is based on rule orderings. Remember that
parameter changes in rules closer to the start-symbol of a
grammar have more effect on the overall distribution of sen-
tences than changes to parameters farther away. One idea is
to take the grammar, transform it into a graph so that each
unique left-hand side symbol is a vertex and each individual
right-hand-side symbol is a weighted arc. Using the start-
symbol vertex as the root node and assuming each arc has
weight 1.0, one can assign a rank to each vertex by finding
the weight of the shortest path from the root to all the other
vertices. This ordering may provide a convenient way to
iteratively learn the rule probabilities. One can imagine con-
centrating only on learning the parameters of the rules with
rank 1, then fixing those parameters and working on rules
with rank 2, and so forth. When the final rank is reached,
the process would start again from the beginning. Clearly
self-referential rules may pose some difficulty, but the ideas
have yet to be fully examined.

Conclusion

Most parameter learning algorithms for stochastic context-
free grammars retain the entire sentence corpus through-
out the learning process. Incorporating a complete memory
of sentence corpora seems ill-suited for learning in embed-
ded agents. PReEsSPAN and SPAN are two incremental al-
gorithms for learning parameters in stochastic context-free
grammars using only summary statistics of the observed
data. Both algorithms require a fixed amount of space re-
gardless of the number of sentences they processes. Despite
using much less information than the inside-outside algo-
rithm, PRESPAN and SPAN perform almost as well.

Acknowledgements Paul R. Cohen provided helpful com-
ments and guidance when revising and editing the paper.
Additional thanks to Gary Warren King and Clayton Mor-
rison for their excellent suggestions.

Mark Johnson supplied a clean implementation of the
inside-outside algorithm.

This research is supported by DARPA/USASMDC under
contract number DASG60-99-C-0074. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright nota-
tion hereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements
either expressed or implied, of DARPA/USASMDC or the
U.S. Government.

References

Allen, J. (1995). Natural language understanding. The Ben-
jamins/Cummings Publishing Company, Inc. 2 edition.

Bertsekas, D. P., & Tsitsiklis, J. N. (Eds.). (1996). Neuro-
dynamic programming. Belmont, MA: Athena Scientific.

Charniak, E. (1993). Statistical language learning. Cam-
bridge: The MIT Press.

Chen, S. F. (1995). Bayesian grammar induction for lan-
guage modeling (Technical Report TR-01-95). Center for
Research in Computing Technology, Harvard University,
Cambridge, MA.

Chen, S. F. (1996). Building probabilistic models for natural
language. Doctoral dissertation, The Division of Applied
Sciences, Harvard University.

Cover, T. M., & Thomas, J. A. (1991). Elements of informa-
tion theory. John Wiley and Sons, Inc.

Lari, K., & Young, S. J. (1990). The estimation of stochas-
tic context-free grammars using the inside-outiside algo-
rithm. Computer Speech and Language, 4, 35-56.

Lari, K., & Young, S. J. (1991). Applications of stochas-
tic context-free grammars using the inside-outside algo-
rithm. Computer Speech and Language, 5, 237-257.

Nevill-Manning, C., & Witten, 1. (1997). ldentifying hier-
archical structure in sequences: A linear-time algorithm.
Journal of Artificial Intelligence Research, 7, 67-82.

Sipser, M. (1997). Introductionto the theory of computation.
Boston: PWS Publishing Company.

Stolcke, A. (1994). Bayesian learning of probabilistic lan-
guage models. Doctoral dissertation, Division of Com-
puter Science, University of California, Berkeley.

Stolcke, A., & Omohundro, S. (1994). Inducing probabilis-
tic grammars by bayesian model merging. Grammatical
Inference and Applications (pp. 106-118). Berlin, Hei-
delberg: Springer.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learn-
ing: anintroduction. Cambridge: The MIT Press.

